Monatshefte für Chemie 123, 251–256 (1992)

Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1992 Printed in Austria

Hydrogenation of Vermistatin

Bohumil Proksa^{1, *}, Stanislava Uhrínová¹, Jana Adamcová², and Ján Fuska²

¹ Institute of Chemistry, Slovak Academy of Sciences, CS-842 38 Bratislava, Czechoslovakia

² Department of Biochemical Technology, Faculty of Chemistry, Slovak Technical University, CS-812 37 Bratislava, Czechoslovakia

Summary. Hydrogenation of vermistatin, a metabolite of *Penicillium vermiculatum*, afforded *cis*- and *trans*-3-(2'-carboxy-4',6'-dimethoxybenzyl)-6-propyltetrahydro-4*H*-pyran-4-one and 4,6-dimethoxy-3-(4'-propylcyclopentanon-2'-yl)phthalide. The latter compound was found to be the strongest inhibitor of RNA synthesis in P 388 leukemia cells of all compounds tested.

Keywords. Hydrogenation over Pd/C; Leukemia P 388; RNA synthesis inhibition; Vermistatine derivatives.

Hydrierung von Vermistatin

Zusammenfassung. Bei der Hydrierung von Vermistatin, einem neuen sekundären Metabolit aus *Penicillium vermiculatum*, wurden *cis*- und *trans* 3-(2-'Carboxy-4',6'-dimethoxybenzyl)-6-propyltetrahydro-4-pyran-4-on und 4,6-dimethoxy-3-(4'-propylcyclopentanon-2'-yl)phthalid erhalten und spektroskopisch charakterisiert. Die letztgenannte Verbindung zeigte von allen getesteten Verbindungen die stärkste Hemmwirkung auf die RNA Synthese in P 388 Leukämiezellen.

Introduction

Vermistatin (1), a secondary metabolite of *Penicillium vermiculatum* [1] inhibits the RNA synthesis in EAC and P388 leukemia cells [2]. The 4H-pyran-4-one moiety in the structure of compound 1 representing a masked tricarbonyl system might be responsible for the biological activity of vermistatin (1). In this paper considerable attention has been paid to the preparation of vermistatin derivatives with a modified supposed reactive center and to biological evaluation of the synthesized compounds.

Results and Discussion

Hydrogenation of vermistatin (1) over Pd/C in methanol and subsequent chromatographic purification of the mixture afforded compounds 2-4. According to the molecular formula compound 2 is an isomer of octahydrovermistatin.

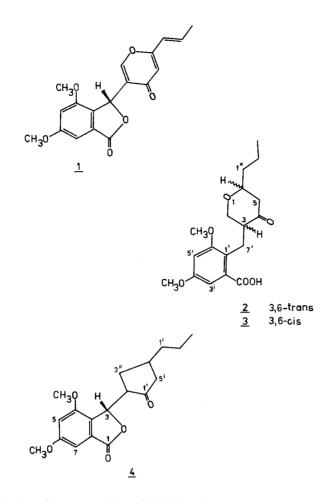


Table 1. ¹³C-NMR data of compounds 2 and 3 (gd/ppm)

С	2	3	
2	71.6	71.5	
3	51.3	52.4	
4	209.6	210.3	
5	48.5	45.5	
6	79.0	78.0	
1′	122.2	122.8	
2'	131.5	130.5	
3'	105.8	106.4	
4'	158.6	158.7	
5'	102.7	103.1	
6′	158.9	158.7	
7′	21.5	27.6	
1″	38.6	38.1	
2″	18.4	18.4	
3″	14.0	14.0	
СООН	172.2	172.1	
OCH ₃	55.5; 55.7	55.5 (2×)	

Н	2		3	
	δ/ppm	J/Hz	δ/ppm	J/Hz
2 a	3.48 dd	11.3, 11.3	3.76 dd	11.7, 3.6
2 e	4.03 dd	11.3, 6.5	4.10 dd	11.7, 2.3
3 a	3.08 ddddd	11.3, 8.7, 6.5	_	_
		4.5, 1.2		
3 e	—		2.61 ddddd	9.8, 5.0, 3.6
				2.3, 1.3
5 a	2.35 ddd	13.6, 11.4, 1.2	2.77 dd	14.4, 10.5
5 e	2.41 dd	13.6, 2.3	2.34 ddd	14.4, 3.0, 1.3
6	3.62 m	10.5, 3.1	3.66 m	10.5, 3.1
7′ a	3.33 dd	13.5, 4.5	3.48 dd	13.5, 9.8
7' Ь	2.86 dd	13.5, 8.7	3.27 dd	13.5, 5.0

Table 2. ¹H-NMR data of the tetrahydro-4 *H*-pyran-4-one moiety of compounds 2 and 3 (δ /ppm)

The IR spectrum of 2 disclosed one carbonyl band at 1705 cm^{-1} but lacked bands associated with the phthalide moiety and γ -pyrone carbonyls present in the original spectrum of vermistatin. The ¹³C-NMR spectrum of compound 2 revealed signals of sp² carbons of substitued benzoic acid, one C = O carbon bound in a sixmembered ring and further ten sp³ carbons (Table 1). In comparison with 1 substantial changes were observed in the phthalide moiety. Hydrogenolysis of this lactone was evidenced by signals of a benzyl carbon (δ 21.5 ppm), a downfield shift of the carboxyl carbon (δ 172.2 ppm vs. 170.0 in the spectrum of vermistatin and the absence of that of one sp³ carbon bound to a heteroatom (δ 73.6 ppm in the vermistatin spectrum). The M^+ peak of compound 2 was not the base peak as observed in the spectrum of 1, the most intese peaks corresponded to fragments triggered by the methylene bridge rupture.

According to these data compound 2 was assigned the structure of 3-(2'-carboxy-4',6'-dimethoxybenzyl)-6-propyltetrahydro-4*H*-pyran-4-one. The MS of 3 was identical with that of compound 2. The main differences in the ¹³C-NMR of both compounds were observed in signals of the tetrahydro-4*H*-pyran-4-one protons and carbons (Table 1). Analysis of coupling constants (Table 2) together with an NOE experiment disclosed the difference in orientation of the C-3 substituents. The benzyl moiety in the structure 2 has an equatorial orientation contrary to that in structure 3 with an axial arrangement (Fig. 1). The propyl group attached to C-6 is in an equatorial position in both structures. The mutual orientation of tetrahydro-4*H*-pyran-4-one substituents is *trans* in compound 2 and *cis* in the isomer 3. The thermodynamically less favourable *cis* isomer 3 isomerizes slowly into the *trans* isomer 2 in solution; about a 30% conversion was observed after 4 days.

The mass spectrum of compound 4 displays a weak M^+ peak (m/z 318) accompanied by intense peaks at m/z 194 and 124. The IR spectrum revealed bands of a phthalide lactone (1760 cm⁻¹) and

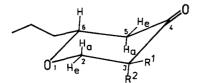


Fig. 1. Arrangement of substituents in the tetrahydropyranone moiety of compounds 2 and 3. 2: $R^1 = C_{10}H_{11}O_4$, $R^2 = H$; 3: $R^1 = H$, $R^2 = C_{10}H_{11}O_4$

Position	¹³ C δ/ppm	¹ H		
		δ/ppm	J/Hz	
1	170.3	_	_	
3	77.3	5.94 d	2.4	
3 a	128.8	_	_	
4	154.7	_	-	
5	104.9	6.67d	2.0	
6	162.7	_	-	
7	98.6	6.91 d	2.0	
7 a	129.5	_	-	
1'	215.9	-	_	
2'	51.0	3.11 dddd	12.2, 8.2, 2.4, 1.0	
3'	28.1	$1.62 dd dd^a$	12.3, 6.1, 8.2, 2.1	
		1.03 ddd ^b	12.3, 12.2, 11.4	
4′	34.2	2.04 m	12.2, 11.4, 6.7, 6.1	
5'	45.3	2.50 dddd ^a	17.8, 6.7, 2.1, 1.0	
		1.88 dd ^b	17.8, 12.2	
1″	37.8	$1.2 - 1.5 \mathrm{m}$		
2″	20.9	$1.2 - 1.5 \mathrm{m}$		
3″	14.1	0.86 t	7.0	
OCH_3 (2×)	55.8	3.86 s		

Table 3. NMR data of compound 4

^a 3'a; 5'a

^b 3' b; 5' b

one alicyclic ketone (1730 cm^{-1}) . The ¹³C-NMR spectrum confirmed the presence of a dimethoxy-phthalide grouping attached to a propylcyclopentanone group [3].

These data indicate a contraction of the γ -pyrone ring during vermistatin hydrogenation. Arrangement of substituents in the cyclopentanone ring of compound **4** and the relative configuration were deduced from its ¹H-NMR spectrum (Table 3). It is more complex than that of compounds **2** and **3** due to the absence of a heteroatom in the alicyclic moiety. The long-range coupling constants ${}^{4}J_{H, H}$ extracted from the coupling patterns of protons H-5'a with H-2' and H-3'b, together with the vicinal coupling constants indicate a *quasi* equatorial orientation of both cyclopentanone substituents in the structure of compound **4** (Fig. 2). These facts led us to ascribe the structure of 4,6-dimethoxy-3-(4'-propylcyclopentanon-2'-yl)phthalide to compound **4**. The compounds **1**-**4** were tested as inhibitors of ${}^{14}C$ -uridine incorporation into P 388 leukemia cells [4]. Vermistatin (1) caused a 18% inhibition of incorporation of the labelled RNA synthesis precursor in a 150 µg/

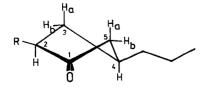


Fig. 2. Spatial arrangement of the cyclopentanone ring substituents in structure 4; $R = C_{10}H_9O_4$

Hydrogenation of Vermistatin

255

ml concentration; tetrahydropyranones 2 and 3 did not show any inhibibition, but an enhancement of incorporation (+20 and +32%, respectively). The most significant inhibitor in this test was the phthalide 4, which lowered the uridine incorporation to 68% at 50 μ g/ml concentration. These data indicate the phthalide moiety to be essential for the cytoxic activity of vermistatin (1).

Experimental Part

Melting points were determined on a Kofler micro hot-stage the IR spectra were recorded with a Perkin Elmer, model 983 spectrometer. The EI-MS were measured with a Jeol JMS 100 D apparatus at 70 eV and 300 μ A. The ¹H- and ¹³C-NMR spectra of CDCl₃ solutions were run with a Bruker AM-300 instrument operating at 300 and 75 MHz, respectively (δ relative to *TMS*). The 2D-quantum filtered H,H-COSY spectra [5, 6] were recorded under following parameters: spectral width 1 150 Hz, acquisition time 0.9 s, 2 K data points in F_2 , relaxation delay 1 s; 16 scans (two dummy) in each of 256 FIDs were zero filled to 512 data points to yield the final digitization of 0.25 Hz per point. Quadrature detection in t_1 was accomplished by the time-proportional phase-increment method [6]. The HETCOR spectra were acquired with ¹H decoupling in the F_1 domain [7, 8] with following parameters: relaxation delay 2 s, acquisition time 0.14 s; 128 scans (2 dummy); spectral width in F_1 was \pm 560 Hz; 128 increments were acquired and zero filled to 256 in F_1 . The spectral width in F_2 was 7 698 Hz. The 1D-NOE difference experiment [9, 10] parameters were: acquisition time 4 s, number of scans 80, time of presaturation of individual multiplet 6 s. Silufol UV₂₅₄ in S-1: chloroformbenzene-methanol (10:1:1) and visualization at 254 nm were used in analytical TLC; Kieselgel 60 PF₂₅₄ was employed for preparative TLC.

Vermistatin Hydrogenation

Vermistatin (1, 250 mg) dissolved in methanol (100 ml) was hydrogenated over 10% Pd/C (10 mg) at an ambient temperature for 4 h. The catalyst was filtered off, the filtrate was concentrated, the rest was purified by preparative TLC in S-1. The individual zones were eluted with chloroform methanol (1:1), the solvents were evaporated and the residue was crystallized from diethylether -n-heptane to give pure compounds 2 (120 mg), 3 (45 mg) and 4 (36 mg).

trans-3-(2'-Carboxy-4',6'-dimethoxybenzyl)-6-propyltetrahydro-4H-pyran-4-one (2)

M. p. 214–215°C, R_F =0.24. For C₁₈H₂₄O₆ (336.4) calc. 64.27, H7.19; found C64.22, H7.24. IR (CHCl₃) 3004, 2962, 2935 (C-H), 1705 (C=O), 1604, 1517 (aromatics) cm⁻¹. MS: m/z=336(M^+ , 12), 318(7), 288(5), 273(6), 221(7), 196(24), 195(100), 182(28), 154(14), 141(9). NMR: see Table 1 and 2.

cis-3-(2'-Carboxy-4',6'-dimethoxybenzyl)-6-propyltetrahydro-4H-pyran-4-one (3)

M. p. 212–213°C, R_F =0.20. For C₁₈H₂₄O₆ (336.4) calc. C 64.27, H 7.19; found C 64.19, H 7.12. IR (CHCl₃) 3 000, 2 954, 2 930 (C-H), 1 705 (C=O), 1 606, 1 517 (aromatics) cm⁻¹. NMR: see Tables 1 and 2.

4,6-Dimethoxy-3-(4'-propylcyclopentanon-2'-yl)phthalide (4)

M. p. $162-164^{\circ}$ C, $R_F=0.38$. For C₁₈H₂₂O₅ (318.4) calc C67.91, H6.96; found C67.85, H6.88. IR (CHCl₃): 3000, 2958, 2938 (C-H), 1760, 1730 (C=O), 1610, 1525 (aromatics). MS *m*/*z*: 318(*M*⁺, 3), 276(1), 274(1), 194(100), 124(40), NMR: see Table 3.

References

- [1] Fuska J., Uhrín D., Proksa B., Votický Z., Ruppeldt J. (1986) J. Antibiot. 39: 1605
- [2] Fuska J., Fusková A., Nemec P. (1979) Biológia (Bratislava) 34: 735
- [3] Stothers J., Tan C. T. (1974) Can. J. Chem. 52: 308
- [4] Fuska J., Miko M., Nemec P., Drobnica L. (1971) Neoplasma 18: 631
- [5] Wagner G., Ernst R. R., Wüthrich K. (1983) Biochem. Biophys. Res. Commun. 117: 479
- [6] Marion D., Wüthrich K. (1983) Biochem. Biophys. Res. Commun. 113: 967
- [7] Bax A. (1983) J. Magn. Reson. 53: 517
- [8] Wilde J. A., Bolton P. H. (1984) J. Magn. Reson. 59: 343
- [9] Neuhaus D. (1983) J. Magn. Reson. 53: 109
- [10] Kövér K. E. (1984) .J. Magn. Reson. 59: 485

Received May 23, 1991. Accepted June 17, 1991